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Abstract

This paper proposes a novel approach for nonlinearity detection in vibrating systems. The approach is developed based

on a new concept recently proposed by the author known as nonlinear output frequency response functions (NOFRFs)

and the properties of the NOFRFs for nonlinear systems with multiple degrees of freedom (mdof). The results of numerical

simulation studies verify the effectiveness of the approach. Nonlinear components often represent faults in practical mdof

systems including beams. The proposed approach therefore has significant potential in the fault diagnosis of practical mdof

engineering systems and structures.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In engineering practice, many mechanical and structural systems require more than one set of coordinates to
describe the systems’ behaviours and, consequently, need a multi-degree-of-freedom (mdof) model to
represent the systems. mdof systems can behave nonlinearly simply due to the nonlinear characteristics of one
component within the systems. In many practical cases, such a nonlinear component may represent a fault.
Typical examples of such a case are beams, as it is well known that beams can behave nonlinearly due to the
presence of internal breathing cracks [1,2]. Therefore, locating nonlinear components in mdof systems has
considerable significance in fault diagnosis for a wide range of mdof engineering systems and structures, which
can, like beams, behave nonlinearly due to the existence of faults.

The detection of faults in mdof structures has been studied by Zhu and Wu [3] where the structure with
faults is still considered to be linear and the location and magnitude of the fault are estimated using measured
changes in the natural frequencies. Based on a one-dimensional structure model, Sakellariou and Fassois [4,5]
have used a stochastic output error vibration-based methodology to detect faults in structures where the faulty
elements are modelled as components of cubic stiffness.

The present study is concerned with the development of a novel approach for detecting the nonlinearity in
mdof vibrating systems, which can represent a fault in the system. This work is the latest in a series of
investigations conducted by the authors on this subject. For simplicity in demonstrating the main ideas, simple
one-dimensional mdof systems with only one nonlinear component will be considered, as shown in Fig. 1.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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Fig. 1. The modf system considered in the present study.
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However, compared with existing methods, the present study addresses the issues of detecting nonlinearity for
a much wider class of mdof systems. The basis of this work is a totally new concept the author proposed in
paper [6] known as nonlinear output frequency response functions (NOFRFs) together with several important
properties of the NOFRFs of mdof nonlinear systems recently revealed by the authors [7,8]. The results can be
extended to much more general cases including multidimensional mdof systems with multiple nonlinear
components, and therefore have significant practical engineering applications.
2. Mdof systems with nonlinear component

The systems considered in the present study are described by a typical multi-degree-of-freedom oscillator as
shown in Fig. 1 with the input force u(t) applied at the nth mass.

If the characteristics of all the springs and dampers are linear, then this oscillator is an mdof linear system
with the motion governing equation

M €xþ C _xþ Kx ¼ F ðtÞ, (1)

where
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are the system damping and stiffness matrix, respectively. x ¼ (x1,y, xn)
0 is the displacement vector, and

F ðtÞ ¼ ð0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{n�1

; uðtÞÞ0 (2)

is the external force vector acting on the oscillator.
In order to show the main ideas, consider the simple case where there is only one nonlinear component in

the system and assume that this nonlinear component is located between the (J�1)th and Jth masses with
JA{1,y, n} and the 0th mass denotes the wall in Fig. 1. In addition, it is assumed that the nonlinear
component can consist of a nonlinear spring and/or a nonlinear damper, and the restoring forces of the
nonlinear spring and damper FS(D) and FDð _DÞ are the polynomial functions of the deformation
D ¼ (xJ�1�xJ) and its derivative _D, respectively, i.e.,

FSðDÞ ¼
XP

l¼1

rlDl ; FDð _DÞ ¼
XP

l¼1

wl
_D

l
,

where P is the degree of the polynomials. Thus by denoting

NF ¼ 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{J�2

;�FSðDÞ � FDð _DÞ; FSðDÞ þ FDð _DÞ; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{n�J

0
@

1
A0, (3)

the mdof nonlinear oscillator considered in the present study can be described as

M €xþ C _xþ Kx ¼ NFþ F ðtÞ. (4)

Eqs. (3) and (4) are the motion governing equations of mdof systems with one nonlinear component.
Obviously, this nonlinear component can make the whole system behave nonlinearly. The basic issue
addressed in this study is how to locate the position of this nonlinear component from the input force and the
corresponding responses of the masses in the system. If for example, as mentioned in the introduction, the
existence of the nonlinear component implies the existence of a fault in the system such as cracks in beams,
locating the nonlinear component in system (3, 4) is equivalent to detecting the fault in the system and
therefore has significant implications in engineering practices.
3. NOFRFs of mdof systems

3.1. The basic concept of NOFRFs

The concept of NOFRFs was recently proposed by the author to provide an alternative description for the
frequency domain behaviours of nonlinear systems [6].

For nonlinear systems which are stable at zero equilibrium and can be described in a neighbourhood of
the equilibrium by a Volterra series [9,10], the output frequency response to a general input is described in
Ref. [11] as

X ðjoÞ ¼
PN
n̄¼1

X n̄ðjoÞ for 8o;

X n̄ðjoÞ ¼
1=

ffiffiffī
n
p

ð2pÞn̄�1
R
o1þ���þon̄¼o

Hn̄ðjo1; . . . ; jon̄Þ
Q̄n
i¼1

UðjoiÞdsn̄o;

8>>>><
>>>>:

(5)

where X(jo) is the spectrum of the system output, X nðjoÞ represents the nth-order output frequency response
of the system, U(jo) is the spectrum of the system input,

Hnðjo1; . . . ; jonÞ ¼

Z 1
�1

. . .

Z 1
�1

hnðt1; . . . ; tnÞe
�ðo1t1þ���þon̄tnÞj dt1 . . . dtn (6)
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and is known as the nth-order generalised frequency response function (GFRF) [9,12]. The termZ
o1þ���þon¼o

Hnðjo1; . . . ; jon̄Þ
Ȳn

i¼1

UðjoiÞdsno

in Eq. (5) denotes the integration of

Hnðjo1; . . . ; jonÞ
Yn

i¼1

UðjoiÞ

over the n-dimensional hyper-plane o1 þ � � � þ on ¼ o.
For the analysis of the nonlinear system output spectrum given by Eq. (5), the concept of the NOFRFs was

proposed in Ref. [6] as

GnðjoÞ ¼

R
o1þ���þon¼o

Hnðjo1; . . . ; jonÞ
Qn̄

i¼1UðjoiÞdsnoR
o1þ���þon¼o

Qn̄
i¼1UðjoiÞdsno

; n ¼ 1; . . . ;N (7)

under the condition that

UnðjoÞ ¼
Z
o1þ���þon¼o

Yn

i¼1

UðjoiÞdsnoa0. (8)

It was also revealed in Ref. [6] that the NOFRF concept has several important properties such as
(1)
 The NOFRFs are insensitive to a change of the input spectrum by a constant gain, that is

GnðjoÞ
��
UðjoÞ¼aUðjoÞ ¼ GnðjoÞ

��
UðjoÞ¼UðjoÞ. (9)
(2)
 By introducing the NOFRF concept, the system output spectrum can be described as

X ðjoÞ ¼
XN

n¼1

X nðjoÞ ¼
XN

n¼1

GnðjoÞUnðjoÞ, (10)

which is similar to the description of the output frequency response of linear systems.
It is known from Eq. (7) that the nth-order NOFRF GnðjoÞ depends not only on the GFRF
Hnðjo1; . . . ; jonÞðn ¼ 1; . . . ;NÞ but also on the input spectrum U(jo). That is, the NOFRFs generally reflect
a combined contribution of both the system and the input to the system output frequency response behaviour.
The dynamic properties of nonlinear systems are determined by the GFRFs in the frequency domain [9].
However, the multidimensional nature implies that the GFRFs are difficult for use in nonlinear system
analyses. Eq. (7) indicates GnðjoÞ consists of a weighted sum of the nth-order GFRF Hnðjo1; . . . ; jonÞ over the
n-dimensional hyper-plane o1 þ � � � þ on ¼ o where the weights depend on the input, and hence the NOFRFs
can be regarded as a one-dimensional representation of the frequency domain properties of nonlinear systems.
This implies that, compared to the GFRFs, the NOFRFs can more easily be used to analyse nonlinear systems
in the frequency domain in many practical applications.

3.2. The NOFRFs of mdof systems

The NOFRF concept can be readily extended to the case of mdof systems. The nth-order NOFRF
associated with the ith mass of a mdof nonlinear system was defined as [7,8]

Gði;nÞðjoÞ ¼

R
o1þ���þon¼o

H ði;nÞðjo1; . . . ; jonÞ
Qn

q¼1UðjoqÞdsnoR
o1þ���þon¼o

Qn
q¼1UðjoqÞdsno

ð1pnpN ; 1pipnÞ, (11)

where H ði; nÞðjo1; . . . ; jonÞ represents the nth-order GFRF associated with the ith mass.
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In addition to the general properties as given in Eqs. (9) and (10), the NOFRFs of the mdof system (3, 4)
also have the following properties [7,8]:

Gði;2ÞðjoÞ
Gðiþ1;2ÞðjoÞ

¼ � � � ¼
Gði;NÞðjoÞ

Gðiþ1;NÞðjoÞ
¼ li;iþ1

ðjoÞ for 1pipn� 1, (12)

Gði;1ÞðjoÞ
Gðiþ1;1ÞðjoÞ

¼
Gði;2ÞðjoÞ

Gðiþ1;2ÞðjoÞ
� � � ¼

Gði;NÞðjoÞ
Gðiþ1;NÞðjoÞ

¼ li;iþ1
ðjoÞ for 1pipJ � 2, (13)

Gði;1ÞðjoÞ
Gðiþ1;1ÞðjoÞ

a
Gði;2ÞðjoÞ

Gðiþ1;2ÞðjoÞ
¼ � � � ¼

Gði;NÞðjoÞ
Gðiþ1;NÞðjoÞ

¼ li;iþ1
ðjoÞ for J � 1pipn� 1. (14)

Eqs. (12)–(14) show the relationships between the NOFRFs associated with two consecutive masses in
system (3, 4) and indicate that
(1)
 the ratios of the nth-order NOFRFs associated with two consecutive masses are the same for different n’s
if nX2,
(2)
 if two consecutive masses are all on the left of the system’s nonlinear component, then the ratio of the
first-order NOFRFs associated with the two masses is the same as the ratio of the higher order NOFRFs
associated with the two masses,
(3)
 if at least one of two consecutive masses is on the right of the system’s nonlinear component, then the
ratio of the first-order NOFRFs associated with the two masses is different from the ratio of the higher
order NOFRFs associated with the two masses.
These properties are a very important development for the recently proposed theories and methods of the
NOFRF-based nonlinear system frequency domain analysis [13–20] and are especially useful for the location
of the nonlinear component in mdof systems. The properties have been rigorously proved and used for
nonlinear mdof system analysis [7,8]. Therefore, only a numerical simulation result for a 6-dof oscillator is
provided to demonstrate the validity of these properties.

In the simulation study, n ¼ 6, and the parameters of the 6-dof oscillator were chosen as m1 ¼ � � � ¼ m6 ¼ 1,
k1 ¼ � � � ¼ k6 ¼ 3:5531� 104; C ¼ mK, m ¼ 0.01. A nonlinear spring is located between the 3rd and 4th masses
in the oscillator, that is J ¼ 4. The restoring force of the nonlinear spring is

S4ðDÞ ¼ k4Dþ 0:8k2
4D

2 þ 0:4k3
4D

3. (15)

The input considered is a sinusoidal force u(t) ¼ sin(oFt), where oF ¼ 2p� 20.
It is well known that under quite general conditions [9] the response of a nonlinear system to a sinusoidal

input is the super-harmonics of the input; and in such cases it can readily show that the even order super-
harmonics are contributed by the systems nonlinearity of even orders; the odd order super-harmonics are
contributed by the systems nonlinearity of odd orders. Therefore, for the 6-dof oscillator under study, the
displacement spectrum of all the masses can be described as

X iðjoF Þ ¼ Gði;1ÞðjoF ÞU1ðjoF Þ þ Gði;3ÞðjoF ÞU3ðjoF Þ þ � � � þ Gði;2n�1ÞðjoF ÞU2n�1ðjoF Þ þ � � � ,

X iðj2oF Þ ¼ Gði;2Þðj2oF ÞU2ðj2oF Þ þ Gði;4Þðj2oF ÞU4ðj2oF Þ þ � � � þ Gði;2nÞðj2oF ÞU2nðj2oF Þ þ � � � ,

X iðj3oF Þ ¼ Gði;3Þðj3oF ÞU3ðj3oF Þ þ � � � þ Gði;2n�1Þðj3oF ÞU2n�1ðj3oF Þ þ � � � ,

X iðj4oF Þ ¼ Gði;4Þðj4oF ÞU4ðj4oF Þ þ � � � þ Gði;2nÞðj4oF ÞU2nðj4oF Þ þ � � � ,

..

. ..
. ..
.

i ¼ 1; . . . ; 6.

Consequently, in this specific case, properties (12)–(14) of the NOFRFs of mdof system (3, 4) imply

Gði;2Þðj2oF Þ

Gðiþ1;2Þðj2oF Þ
¼

Gði;4Þðj2oF Þ

Gðiþ1;4Þðj2oF Þ
¼ � � � ¼

Gði;2nÞðj2oF Þ

Gðiþ1;2nÞðj2oF Þ
¼ li;iþ1

ðj2oF Þ for 1pip5, (16)
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Gði;1ÞðjoF Þ

Gðiþ1;1ÞðjoF Þ
¼

Gði;3ÞðjoF Þ

Gðiþ1;3ÞðjoF Þ
¼ � � � ¼

Gði;2n�1ÞðjoF Þ

Gðiþ1;2n�1ÞðjoF Þ
¼ li;iþ1

ðjoF Þ for 1pip2, (17)

Gði;1ÞðjoF Þ

Gðiþ1;1ÞðjoF Þ
a

Gði;3ÞðjoF Þ

Gðiþ1;3ÞðjoF Þ
¼ � � � ¼

Gði;2n�1ÞðjoF Þ

Gðiþ1;2n�1ÞðjoF Þ
¼ li;iþ1

ðjoF Þ for 3pip5. (18)

Table 1 shows the comparison between the evaluated Gði;2Þðj2oF Þ=Gðiþ1;2Þðj2oF Þ and Gði;4Þðj2oF Þ=
Gðiþ1;4Þðj2oF Þ for i ¼ 1,y, 5. Table 2 shows the comparison between the evaluated Gði;1ÞðjoF Þ=Gðiþ1;1ÞðjoF Þ

and Gði;3ÞðjoF Þ=Gðiþ1;3ÞðjoF Þ for i ¼ 1,y, 5. These results were obtained by using the system input, the
simulated system response data, and the algorithm developed in Ref. [6] for determining the NOFRFs of
nonlinear systems. Obviously, the results in Tables 1 and 2 demonstrate the validity of Eqs. (16)–(18)—the
properties of the NOFRFs of mdof systems in the specific case of the considered 6-dof oscillator.

4. A novel approach for locating nonlinear component in mdof systems

It is easily seen from the example above that properties (12)–(14) of the NOFRFs of mdof systems can be
directly used to locate the nonlinear component in system (3, 4). This is a direct method and involves
determining the NOFRFs associated with all the masses in the system, evaluating and comparing the ratios of
the NOFRFs associated with two consecutive masses, and finally determining J in Eqs. (13) and (14) from the
evaluated NOFRFs’ ratios so as to locate the position of the nonlinear component. However this method
requires implementing the algorithm in Ref. [6] to determine the NOFRFs associated with all masses in system
(3, 4) up to an appropriate order N, which is normally unknown in practice and therefore has to be chosen as a
sufficiently large number to ensure an effective implementation of the algorithm. Obviously, this problem has
to be addressed in practical engineering applications.

In order to solve this problem, the authors recently proposed a dual harmonic input method for locating the
nonlinear component of system (3, 4) [7]. As opposed to the direct method where at least N tests are needed to
generate the data for locating the nonlinear component, this dual harmonic input method only requires two
tests on the system. The problem with this method is that only sinusoidal force inputs can be used to excite an
inspected system to generate the system responses for locating the nonlinear component. This can be a
limitation to the practical applications of the method.

In this section, a totally new approach is proposed for locating nonlinear component in system (3, 4) to
resolve the problems with the available direct and dual harmonic input methods. The basis of this novel
Table 2

The evaluated values of Gði;1ÞðjoF Þ=Gðiþ1;1ÞðjoF Þ and Gði;3ÞðjoF Þ=Gðiþ1;3ÞðjoF Þ

Gði;1ÞðjoF Þ=Gðiþ1;1ÞðjoF Þ Gði;3ÞðjoF Þ=Gðiþ1;3ÞðjoF Þ

i ¼ 1 �0.5396+0.0639j �0.5396+0.0639j

i ¼ 2 0.4207�0.0271j 0.4207�0.0271j

i ¼ 3 0.6901�0.1197j �0.7883�1.7427j

i ¼ 4 0.80858�0.2388j 0.6969+0.5123j

i ¼ 5 0.8179�0.3654j 0.8277+0.2166j

Table 1

The evaluated values of Gði;2Þðj2oF Þ=Gðiþ1;2Þðj2oF Þ and Gði;4Þðj2oF Þ=Gðiþ1;4Þðj2oF Þ

Gði;2Þðj2oF Þ=Gðiþ1;2Þðj2oF Þ Gði;4Þðj2oF Þ=Gðiþ1;4Þðj2oF Þ

i ¼ 1 �0.5078+0.1764j �0.5078+0.1765j

i ¼ 2 0.4258�0.0818j 0.4259�0.0818j

i ¼ 3 �1.5199�0.1875j �1.5199�0.1875j

i ¼ 4 0.9563+1.2569j 0.9563+1.2565j

i ¼ 5 0.7572+0.6107j 0.7571+0.6108j
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approach is a function of frequency proposed for the measurement of the nonlinear relationship between the
responses of two masses.

4.1. The measurement of the nonlinear relationship between the responses of two masses

From the definition of the NOFRFs of mdof systems, it is known that the output spectrum of the ith mass
of mdof system (3, 4) can be written as

X iðjoÞ ¼
XN

n¼1

Gði; nÞðjoÞUnðjoÞ ¼
XN

n¼1

Gði; nÞðjoÞUnðjoÞ þ li;k
ðoÞX kðjoÞ � li;k

ðoÞX kðjoÞ

¼
XN

n¼1

Gði; nÞðjoÞUnðjoÞ þ li;k
ðoÞX kðjoÞ � li;k

ðoÞ
XN

n¼1

Gðk; nÞðjoÞUnðjoÞ

¼
XN

n¼1

½Gði; nÞðjoÞ � li;k
ðoÞGðk; nÞðjoÞ�UnðjoÞ þ li;k

ðoÞX kðjoÞ, (19)

where k � iX1,

li;k
ðjoÞ ¼

Yk�1
ī¼i

li;iþ1
ðjoÞ. (20)

Rewrite Eq. (19) as

X iðjoÞ ¼ ½Gði;1ÞðjoÞ � li;k
ðoÞGðk;1ÞðjoÞ�U1ðjoÞ þ

XN

n¼2

½Gði; nÞðjoÞ

� li;k
ðoÞGðk; nÞðjoÞ�UnðjoÞ þ li;k

ðoÞX kðjoÞ. (21)

From property (12) of system (3, 4), it is known that [7,8]

li;k
ðjoÞ ¼

Gði;nÞðjoÞ
Gðk;nÞðjoÞ

(22)

for nX2. Substituting Eq. (22) into the second term on the right-hand side of Eq. (21) for li;k
ðjoÞ yields

X iðjoÞ ¼ ½Gði;1ÞðjoÞ � li;k
ðoÞGðk;1ÞðjoÞ�U1ðjoÞ þ li;k

ðjoÞX kðjoÞ

¼ Ei;kðjoÞU1ðjoÞ þ li;k
ðjoÞX kðjoÞ, (23)

where

Ei;kðjoÞ ¼ ½Gði;1ÞðjoÞ � li;k
ðjoÞGðk;1ÞðjoÞ�. (24)

It is known from Eq. (23) that if Ei;kðjoÞ ¼ 0,

X iðjoÞ ¼ li;k
ðjoÞX kðjoÞ.

This indicates the relationship between the frequency responses of the ith mass and kth masses is linear.
Therefore, the function of frequency Ei;kðjoÞ as defined in Eq. (24) can be used to indicate the extent to which
the relationship between the responses of the ith mass and kth mass in system (3, 4) is nonlinear.

From properties (12)–(14) of system (3, 4) and the definition of Ei;kðjoÞ, it is easy to deduce the properties of
Ei;kðjoÞ, which link the value of Ei;kðjoÞ to the location of the system nonlinear component, as follows:
(1)
 If Ei;kðjoÞ ¼ 0, there is no nonlinear component between the ith and kth masses, and if there is a nonlinear
component in the system this component is located on the right of the kth mass.
(2)
 If Ei;kðjoÞa0, there is a nonlinear component in the system and this nonlinear component is located on the
left of the kth mass.
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The definition and two properties of E ðjoÞ are the basis of the novel approach for locating nonlinear
component in mdof system (3, 4).
i;k
4.2. The approach

The basic idea of this new approach is to evaluate Ei;iþ1ðjoÞ for i ¼ 1,y, n�1 and use the results along with
the two properties of Ei;kðjoÞ to determine the position of the nonlinear component in the system.

Eq. (23) implies that if system (3, 4) is excited by two force inputs, respectively, with the spectrum of the two
inputs denoted by U ðqÞðjoÞ; q ¼ 1,2, which are only different in strength, i.e., U ðqÞðjoÞ ¼ aqUnðjoÞ; q ¼ 1; 2,
where a1a0; a2a0; and a1aa2, then the corresponding output spectra of the ith and kth masses denoted by
X
ðqÞ
i ðjoÞ and X

ðqÞ
k ðjoÞ, q ¼ 1,2, can be related by the following equations:

X
ð1Þ
i ðjoÞ ¼ Ei;kðjoÞa1UnðjoÞ þ li;k

ðjoÞX ð1Þk ðjoÞ;

X
ð2Þ
i ðjoÞ ¼ Ei;kðjoÞa2UnðjoÞ þ li;k

ðjoÞX ð2Þk ðjoÞ:

8<
: (25)

From Eq. (25), Ei;kðjoÞ can be readily determined from UnðjoÞ and X
ðqÞ
i ðjoÞ, X

ðqÞ
k ðjoÞ, q ¼ 1, 2, as

Ei;kðjoÞ ¼ 1 0½ �
a1UnðjoÞ; X

ð1Þ
k ðjoÞ

a2UnðjoÞ; X
ð2Þ
k ðjoÞ

2
4

3
5�1 X

ð1Þ
i ðjoÞ

X
ð2Þ
i ðjoÞ

" #
. (26)

From the expression of Ei;kðjoÞ given by Eq. (26), the new approach for locating the nonlinear component
in system (3, 4) is proposed as follows:
(1)
(4)
Excite the system twice as described above, measure the responses, and calculate the spectrum for all the
masses in the system to obtain X

ðqÞ
i ðjoÞ; i ¼ 1,y, n, and q ¼ 1,2.
(2)
 Determine Ei;iþ1ðjoÞ using (26) for i ¼ 1,y, n�1.

(3)
 Evaluate E

i;iþ1
for i ¼ 1,y, n�1 as

E
i;iþ1
¼

Ro2

o1
Ei;iþ1ðjoÞ
�� ��do

maxi2 1;...;n�1f g

Ro2

o1
Ei;iþ1ðjoÞ
�� ��doh i , (27)

where [o1,o2] is a frequency band within the frequency range of the input spectrum UnðjoÞ

and E
0;1
ðjoÞ ¼ 0.
Examine E
i;iþ1

for i ¼ 1,y, n�1. If an î can be found such that

E
i;iþ1
� 0 for i ¼ 1; 2; . . . ; ðî � 1Þ but E

i;iþ1
not � 0 for i ¼ î; . . . ; ðn� 1Þ

then it can be concluded that the nonlinear component of system (3, 4) is located between the îth mass
^ ^
and the ði þ 1Þth mass, i.e., J ¼ i þ 1.
It can be seen that this approach basically exploits the properties of Ei;kðjoÞ and uses E
i;iþ1

which is
the normalised integration of Ei;iþ1ðjoÞ

�� �� over the frequency band [o1,o2] for i ¼ 0,1,y, n�1 to locate the

position of the nonlinear component in the system. The introduction and use of E
i;iþ1

is to improve the
robustness of the proposed approach against possible numerical and measurement errors, which are
unavoidable in engineering practices. A detailed analysis of the effects of these errors on the performance of
the proposed approach is an issue that will be addressed in a further study where different models will be used
to represent the characteristics of the errors. In the present study, the effectiveness of the approach will be
verified via numerical simulation studies in the following section.

Clearly, the new approach does not need to know or assume the highest order ‘N’ of the system
nonlinearity, and requires only double testing on the inspected system. Therefore, the approach has the same
advantage as that of the dual harmonic input method. In addition, the new approach allows any form of force
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inputs to be used to excite the system under inspection. This implies that the new approach is suitable for a
much wider range of engineering applications.

5. Simulation studies

In order to verify the effectiveness of the proposed new approach, simulation case studies were conducted.
The results obtained from two case studies, where a damped nonlinear 10-dof system was considered, are
presented below.

5.1. Case study 1

In the first case, the linear characteristic parameters of the 10-dof system are:

m1 ¼ � � � ¼ m10 ¼ 1; k1 ¼ � � � ¼ k5 ¼ k10 ¼ 3:6� 104; k6 ¼ k7 ¼ k8 ¼ 0:8k1,

k9 ¼ 0:9� k1; m ¼ 0:01; C ¼ mK

and the characteristic of the fourth spring of the system is nonlinear with the parameters:

rð4;1Þ ¼ k1; rð4;2Þ ¼ 0:8k2
1; rð4;3Þ ¼ 0:4k3

1; rð4;lÞ ¼ 0 for lX4.

From the procedure in Section 4.2, the new approach was implemented as follows:
(1)
Table

E
i;iþ1

E
1;2

0.001
Two sinusoidal force inputs

uðqÞðtÞ ¼ aq sinðoF tÞ; q ¼ 1; 2,

where oF ¼ 2p� 20, a1 ¼ 1, a2 ¼ 1.5, were applied on the 10th mass to excite the system, respectively,
to generate two sets of output responses on the 10 masses. The spectra of the two sets of output responses
at the driving frequency oF were determined and the results are denoted by X

ðqÞ
i ðjoF Þ; i ¼ 1,y, 10,

q ¼ 1,2.

(2)
 Eq. (26) was then used to determine Ei;iþ1ðjoF Þ for i ¼ 1,y, 9 as follows:

Ei;iþ1ðjoF Þ ¼ 1 0
� � a1UnðjoF Þ; X

ð1Þ
iþ1ðjoF Þ

a2UnðjoF Þ; X
ð2Þ
iþ1ðjoF Þ

2
4

3
5�1 X

ð1Þ
i ðjoF Þ

X
ð2Þ
i ðjoF Þ

" #
,

where UnðjoF Þ denotes the spectrum of u*(t) ¼ sin(oFt) at o ¼ oF.
(3)
 o1 and o2 were chosen as o1 ¼ o2 ¼ oF and E
i;iþ1

i ¼ 1,y, 9 were determined as

E
i;iþ1
¼

Ro2

o1
Ei;iþ1ðjoÞ
�� ��do

maxi2 1;...;n�1f g

Ro2

o1
Ei;iþ1ðjoÞ
�� ��doh i ¼ Ei;iþ1ðjoF Þ

�� ��
maxi2 1;...;9f g Ei;iþ1ðjoF Þ

�� �� .
The results obtained are given in Table 3 and illustrated in Fig. 2.
(4)
 From Table 3 or Fig. 2, it can be found that î ¼ 3. Therefore, the nonlinear component of the system is
located between the î ¼ 3rd mass and î þ 1 ¼ 4th mass, i.e., J ¼ î þ 1 ¼ 4.
Obviously this conclusion reached by using the proposed approach is correct.
3

i ¼ 1,y, 9 evaluated for Case 1 of the simulation studies

E
2;3

E
3;4

E
4;5

E
5;6

E
6;7

E
7;8

E
8;9

E
9;10

9 0.0027 0.53 0.30 0.32 0.53 0.82 1.00 0.97
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Fig. 2. An illustration of E
i;iþ1

, i ¼ 1,y, 9, evaluated for Case 1 of the simulation studies.
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5.2. Case study 2

In the second case, the linear characteristic parameters of the 10-dof system are the same as in Case 1. The
characteristic of the sixth spring of the system is nonlinear with the parameters:

rð6;1Þ ¼ k6; rð6;2Þ ¼ 4k2
1; rð6;3Þ ¼ 0:4k3

1; rð6;lÞ ¼ 0 for lX4.

From the procedure in Section 4.2, the new approach was implemented as follows:
(1)
 Two pulsed force inputs

uðqÞðtÞ ¼
aq; t 2 0; 0:01½ �;

0 otherwise;

(
q ¼ 1:2,

where a1 ¼ 1, a2 ¼ 1.5, were applied on the 10th mass to excite the system, respectively, to generate two
sets of output responses on the ten masses. The spectra of the two sets of output responses were
determined and the results are denoted by X

ðqÞ
i ðjoÞ, i ¼ 1,y, 10, and q ¼ 1, 2.
(2)
 Eq. (26) was then used to determine Ei;iþ1ðjoÞ for i ¼ 1,y, 9 as follows:

Ei;iþ1ðjoÞ ¼ 1 0
� � a1UnðjoÞ; X

ð1Þ
iþ1ðjoÞ

a2UnðjoÞ; X
ð2Þ
iþ1ðjoÞ

2
4

3
5�1 X

ð1Þ
i ðjoÞ

X
ð2Þ
i ðjoÞ

" #

over the frequency band oA[0,2p� 100] where U*(jo) denotes the spectrum of the pulsed force
input

unðtÞ ¼
1; t 2 0; 0:01½ �;

0 otherwise:

�

(3)
 o1 and o2 were chosen as o1 ¼ 0, o2 ¼ 2p� 100 and E
i;iþ1

i ¼ 1,y, 9 were evaluated as

E
i;iþ1
¼

R 200p
0

Ei;iþ1ðjoÞ
�� ��do

maxi2 1;...;9f g

R 200p
0 Ei;iþ1ðjoÞ

�� ��doh i .
The results obtained are shown in Table 4 and illustrated in Fig. 3.
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Table 4

E
i;iþ1

i ¼ 1,y, 9 evaluated for Case 2 of the simulation studies

E
1;2

E
2;3

E
3;4

E
4;5

E
5;6

E
6;7

E
7;8

E
8;9

E
9;10

6.1� 10�8 2.7� 10�7 2.0� 10�6 9.4� 10�6 1.00 0.93 0.40 0.18 0.08
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Fig. 3. An illustration of E
i;iþ1

, i ¼ 1,y, 9, evaluated for Case 2 of the simulation studies.
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(4)
 From Table 4 or Fig. 3, it can be found that î ¼ 5. Therefore, the nonlinear component of the system is
located between the î ¼ 5th mass and î þ 1 ¼ 6th mass, i.e., J ¼ î þ 1 ¼ 6.
Obviously, the conclusion reached by using the proposed approach is again correct.
5.3. Discussion

As demonstrated by the simulation studies, the proposed approach basically evaluates the value of a

Ei;iþ1ðjoÞ related index E
i;iþ1

over i ¼ 1,y, n�1 and locates the position of the nonlinear component in
system (3, 4) via determining an iA{1,y, n�1} where the value of the index has a significant increase from a
value near zero. Since a zero value for the proposed function of frequency Ei;iþ1ðjoÞ indicates that the
relationship between the responses of the ith mass and (i+1)th mass is linear, and a zero value of index E

i;iþ1

shares the same physical interpretation, the proposed approach essentially checks whether the relationship
between the responses of two consecutive masses is linear or not and determines the nonlinear component
position from the result. The proposed approach requires double testing on inspected structures to achieve the
objective. This is because only deterministic force inputs are used as the excitation signal. If stochastic input
forces can be used, the concept of coherence can be exploited and this can produce a simpler algorithm. More
details of these will be reported in a future publication.

It is worth pointing out that a straightforward opinion about the behaviours of system (3, 4) would be that
the relationship between the responses of mass J and mass J+1 is nonlinear because there is a nonlinear spring
and/or damper between the two masses. The relationship between the responses of any other two consecutive
masses is linear because the spring and damper located between the masses are linear components. However,
this possible intuitive judgement is incorrect. The two case studies clearly indicate that the relationship
between the responses of two masses can also be nonlinear even when there is no nonlinear component located
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between the two masses. This shows that the proposed approach is really a significant technique for the
location of system nonlinear component in mdof systems or structures. If there are more than one nonlinear
components in system (3, 4), the situation will become more complicated. However, the basic principles of the
proposed approach can be extended to locate nonlinear components in these more complicated cases.

The only restriction of the proposed approach and its principles in engineering practice is the assumption
that a Volterra series model can represent the behaviours of the mdof system. This condition can be satisfied
when the amplitudes of the excitation forces are within a certain range of limit, which, from the engineering
viewpoints, should be the case in most practical circumstances.
6. Conclusions

In this paper, a novel approach has been proposed for nonlinearity detection in vibrating systems with
multiple degrees of freedom (mdof). The new approach is developed based on the concept of nonlinear output
frequency response functions (NOFRFs) and the properties of the NOFRFs of mdof nonlinear systems, and
only requires testing on inspected systems or structures twice with the applied input forces differing in strength
in the two tests. The approach determines the position of the nonlinear component in an mdof system directly
from the applied input forces and the corresponding responses of the masses in the system. Simulation studies
on a 10-dof oscillator have verified the effectiveness of the new approach.

In many practical mdof systems/structures such as beams, nonlinear components often represent faults.
Therefore, the proposed approach has significant potential in fault diagnosis of practical mdof engineering
systems and structures.

The present study is the latest in a series of research studies conducted by the authors on this subject.
Because compared with previous results, no knowledge about the highest order of the system nonlinearity is
required, and any form of input force excitations can be used, the new approach can be used in a much wider
range of practical applications.

The aim of further research work will be to extend the results to more general cases such as
multidimensional mdof systems with multiple nonlinear components to address problems associated with
the fault diagnosis of more complicated engineering systems/structures.
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